

1A, 50V - 1000V High Efficient Surface Mount Rectifier

FEATURES

- Glass passivated chip junction
- Ideal for automated placement
- Low profile package
- Low power loss, high efficiency
- · Fast switching for high efficiency
- Moisture sensitivity level: level 1, per J-STD-020
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

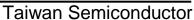
APPLICATIONS

- DC to DC converter
- Switching mode converters and inverters
- Freewheeling application

MECHANICAL DATA

- Case: SOD-123FL
- Molding compound meets UL 94V-0 flammability rating
- Terminal: Matte tin plated leads, solderable per J-STD-002
- Meet JESD 201 class 1A whisker test
- Polarity: Indicated by cathode band
- Weight: 0.019g (approximately)

KEY PARAMETERS				
PARAMETER	VALUE	UNIT		
I _F	1	Α		
V_{RRM}	50 - 1000	V		
I _{FSM}	30	Α		
T _{J MAX}	150	°C		
Package	SOD-123FL			
Configuration	Single die			



SOD-123FL

DADAMETED	SYMBOL	HS1A	HS1B	HS1D	HS1F	HS1G	HS1J	HS1K	HS1M	UNIT
PARAMETER	STWBUL	FL	FL	FL	FL	FL	FL	FL	FL	UNII
Marking code on the device		HAF	HBF	HDF	HFF	HGF	HJF	HKF	HMF	
Repetitive peak reverse voltage	V_{RRM}	50	100	200	300	400	600	800	1000	V
Reverse voltage, total rms value	$V_{R(RMS)}$	35	70	140	210	280	420	560	700	V
Forward current	I _F	1			Α					
Surge peak forward current, 8.3ms single half sine-wave superimposed on rated load	I _{FSM}	30				А				
Junction temperature	T_J	- 55 to +150			°C					
Storage temperature	T _{STG}	- 55 to +150			°C					

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	TYP	UNIT	
Junction-to-lead thermal resistance	$R_{\Theta JL}$	17	°C/W	
Junction-to-ambient thermal resistance	R _{OJA}	85	°C/W	
Junction-to-case thermal resistance	R _{eJC}	19	°C/W	

Thermal Performance Note: Units mounted on PCB (5mm x 5mm Cu pad test board)

PARAMETER		CONDITIONS	SYMBOL	TYP	MAX	UNIT
	110445	I _F = 0.5A, T _J = 25°C		0.82	-	V
	HS1AFL HS1BFL	I _F = 1.0A, T _J = 25°C	V _F	0.89	0.95	V
	HS1DFL	I _F = 0.5A, T _J = 125°C		0.67	-	V
	HS1FFL	I _F = 1.0A, T _J = 125°C		0.75	0.81	V
		I _F = 0.5A, T _J = 25°C		0.93	-	V
- (1)	1104051	I _F = 1.0A, T _J = 25°C	V _F	1.01	1.30	V
Forward voltage ⁽¹⁾	HS1GFL	I _F = 0.5A, T _J = 125°C		0.74	-	V
		I _F = 1.0A, T _J = 125°C		0.85	1.10	V
		I _F = 0.5A, T _J = 25°C		1.21	-	V
	HS1JFL	I _F = 1.0A, T _J = 25°C	V _F	1.36	1.70	V
	HS1KFL HS1MFL	I _F = 0.5A, T _J = 125°C		0.94	-	V
		I _F = 1.0A, T _J = 125°C		1.10	1.38	V
Reverse current @ rated V _R ⁽²⁾		T _J = 25°C		-	5	μA
		T _J = 125°C	I _R	-	150	μA
Junction capacitance	HS1AFL HS1BFL HS1DFL HS1FFL HS1GFL	1MHz, V _R = 4.0V	CJ	11	-	pF
	HS1JFL HS1KFL HS1MFL			6	-	pF
Reverse recovery time	HS1AFL HS1BFL HS1DFL HS1FFL HS1GFL	I _F = 0.5A , I _R = 1.0A I _{II} = 0.25A	t _{rr}	-	50	ns
	HS1JFL HS1KFL HS1MFL			-	75	ns

Notes:

- 1. Pulse test with PW = 0.3ms
- 2. Pulse test with PW = 30ms

ORDERING INFORMATION				
ORDERING CODE ⁽¹⁾	PACKAGE	PACKING		
HS1xFL	SOD-123FL	10,000 / Tape & Reel		

Notes

1. "x" defines voltage from 50V(HS1AFL) to 1000V(HS1MFL)

CHARACTERISTICS CURVES

(T_A = 25°C unless otherwise noted)

Fig.1 Forward Current Derating Curve

1.5 (e) AVERAGE FORWARD CURRENT (b) 25 50 75 100 125 150 LEAD TEMPERATURE (°C)

Fig.2 Typical Junction Capacitance

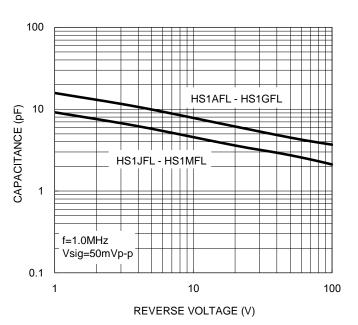
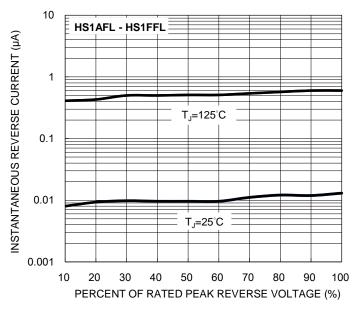
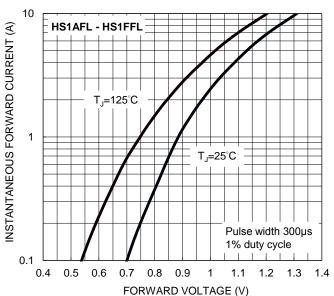




Fig.3 Typical Reverse Characteristics

Fig.4 Typical Forward Characteristics

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Fig.5 Typical Reverse Characteristics

10 INSTANTANEOUS REVERSE CURRENT (µA) **HS1GFL** T_J=125°C = 0.1 0.01 T_J=25°C 0.001 10 30 40 50 60 70 80 90 100 PERCENT OF RATED PEAK REVERSE VOLTAGE (%)

Fig.6 Typical Forward Characteristics

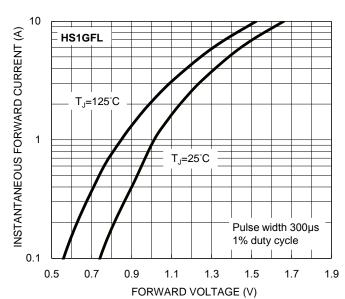
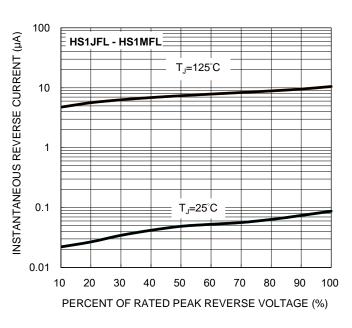
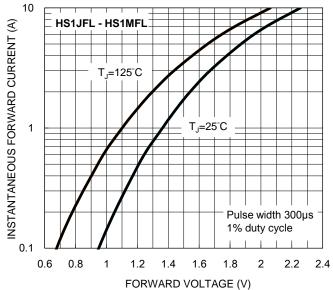
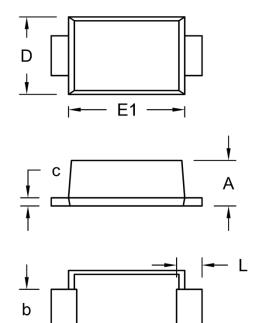
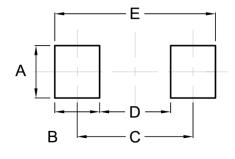




Fig.7 Typical Reverse Characteristics

Fig.8 Typical Forward Characteristics




PACKAGE OUTLINE DIMENSIONS

SOD-123FL

DIM.	Unit	(mm)	Unit (inch)		
Dilvi.	Min.	Max.	Min.	Max.	
Α	0.88	1.35	0.035	0.053	
b	0.80	1.15	0.031	0.045	
С	0.10	0.30	0.004	0.012	
D	1.70	2.10	0.067	0.083	
E	3.45	3.95	0.136	0.156	
E1	2.60	3.10	0.102	0.122	
L	0.30	0.90	0.012	0.035	

SUGGESTED PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
Α	1.40	0.055
В	1.20	0.047
С	3.10	0.122
D	1.90	0.075
E	4.30	0.169

MARKING DIAGRAM

= Marking Code P/N ΥW = Date Code F = Factory Code

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.